Lists of observed and calculated intensity data have been deposited with the IUCr (Reference: OH1097). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

- Bringley, J. F., Scott, B. A., La Placa, S. J., Boehme, R. F., Shaw, T. M., McElfresh, M. W., Trail, S. S. & Cox, D. E. (1990). Nature (London), 347, 263-265.
- Busing, W. R., Martin, K. O. & Levy, H. A. (1964). ORFFE. Report ORNL-TM-306. Oak Ridge National Laboratory, Tennessee, USA.
- Cava, R. J., Siegrist, T., Hessen, B., Krajewski, J. J., Peck, W. F. Jr, Batlogg, B., Takagi, H., Waszczak, J. V., Schneemeyer, L. F. & Zandbergen, H. W. (1991). Physica C, 177, 115-121.
- Demazeau, G., Parent, C., Pouchard, M. & Hagenmuller, P. (1972). Mater. Res. Bull. 7, 913-920.
- Dowty, E. (1995). ATOMS. Shape Software, 521 Hidden Valley Road, Kingsport, TN 37663, USA.
- Hiroi, Z. & Takano, M. (1995). Nature (London), 377, 41-43.
- Howard, C. J. (1982). J. Appl. Cryst. 15, 615-620.
- Izumi, F. (1993). In The Rietveld Method, edited by R. A. Young, ch. 13. Oxford University Press.
- Kim, Y.-I. & Izumi, F. (1994). J. Ceram. Soc. Jpn, 102, 401-404.
- La Placa, S. J., Bringley, J. F., Scott, B. A. & Cox, D. E. (1993). Acta Cryst. C49, 1415-1417.
- Norrestam, R., Nygren, M. & Bovin, J. O. (1991). Angew. Chem. 103, 891-893
- Poeppelmeier, K. R., Lebnowicz, M. E., Scanlon, J. C., Longo, J. M. & Yelon, W. B. (1982). J. Solid State Chem. 45, 71-79.
- Shannon, R. D. (1976). Acta Cryst. A32, 751-767.
- Thompson, P., Cox, D. E. & Hastings, J. M. (1987). J. Appl. Cryst. 20, 79-83.
- Young, R. A. (1993). In The Rietveld Method, edited by R. A. Young, ch. 1. Oxford University Press.

Acta Cryst. (1996). C52, 2384-2385

CsAg_{0.64}Mn_{1.18}Te₂

ERIC J. WU, MICHAEL A. PELL AND JAMES A. IBERS

Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3113, USA. E-mail: ibers@chem.nwu.edu

(Received 29 January 1996; accepted 14 May 1996)

Abstract

The structure of $CsAg_{0.64}Mn_{1.18}Te_2$ has been determined from single-crystal X-ray data. It exhibits the ThCr₂Si₂ structure type, comprising layers of Ag- and Mn-centered tetrahedra that are stacked perpendicular to [001]. The Ag^+ and Mn^{2+} cations are disordered over the same site.

Fig. 1. View of the CsAg_{0.64}Mn_{1.18}Te₂ unit cell along b with 50% probability displacement ellipsoids.

Experimental

Cs₂Te₃, Ag (Aesar, 99.99%), Mn (Johnson Matthey, 99.9%), and Te (Aldrich, 99.8%) were combined in the molar ratio 1:1:2:1. Cs₂Te₃ was synthesized at 194 K from the stoichiometric reaction of Cs (Aldrich, 99.5%) and Te in liquid ammonia under an N₂ atmosphere. The reaction mixture was ground together, sealed under vacuum in a fused silica tube, heated to 1173 K for 8 days, then cooled to room temperature at 3 K h^{-1} . The red plates used for structure determination were manually extracted from the melt. Analysis of these crystals with an EDX-equipped Hitachi S-570 SEM showed the presence of Cs, Ag, Mn, and Te in the approximate ratio 1:0.5:1.5:2. We have also synthesized the potassium analogue of $CsAg_{0.64}Mn_{1.18}Te_2$ by a similar method, as confirmed by precession photographs.

Crystal data

Mo $K\alpha_1$ radiation $CsAg_{0.64}Mn_{1.18}Te_2$ $M_r = 521.968$ $\lambda = 0.70930 \text{ Å}$ Tetragonal Cell parameters from 26 I4/mmm reflections $\theta = 19.5 - 21.5^{\circ}$ a = 4.520(2) Å $\mu = 18.88 \text{ mm}^{-1}$ c = 15.484(8) Å T = 113 (2) K $V = 316.3 (3) \text{ Å}^3$ Plate Z = 2 $0.431 \times 0.319 \times 0.078 \text{ mm}$ $D_x = 5.469 \text{ Mg m}^{-3}$ Red D_m not measured

> $\theta_{\rm max} = 34.97^{\circ}$ $h = -7 \rightarrow 7$

 $k=-7 \rightarrow 7$

 $l = -24 \rightarrow 24$ 6 standard reflections

monitored every 100

intensity decay: none

reflections

Data collection

Picker diffractometer θ –2 θ scans Absorption correction: analytical $T_{\min} = 0.037, T_{\max} =$ 0.226 2621 measured reflections 245 independent reflections $R_{\rm int} = 0.0600$

Refinement

Refinement on F^2	Extinction correction:
R(F) = 0.0308	SHELXL93 (Sheldri
$wR(F^2) = 0.1182$	1993)
S = 2.392	Extinction coefficient:
245 reflections	0.0103 (24)

Acta Crystallographica Section C ISSN 0108-2701 © 1996

(Sheldrick,

11 parameters	ł
$w = 1/[\sigma^2(F_o^2) + (0.04F_o^2)^2]$	
$(\Delta/\sigma)_{\rm max} = 0.017$	
$\Delta \rho_{\rm max} = 3.75 \ {\rm e} \ {\rm \AA}^{-3}$	
$\Delta \rho_{\rm min} = -4.15 \ {\rm e} \ {\rm \AA}^{-3}$	

Atomic scattering factors from *International Tables* for Crystallography (1992, Vol. C, Tables 4.2.6.8 and 6.1.1.4) Sheldrick, G. M. (1994). SHELXTLIPC. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.Waters, J. M. & Ibers, J. A. (1977). Inorg. Chem. 16, 3273–3277.

Table 1. Positional parameters, site occupancies and equivalent isotropic displacement parameters $(Å^2)$

$$U_{\text{eq}} = (1/3) \sum_i \sum_j U_{ij} a_i^* a_i^* \mathbf{a}_i \cdot \mathbf{a}_j.$$

	Occupancy	х	у	z	U_{eq}
Csi	1.00	0	Ő	0	0.0176 (4)
Agl	0.320 (8)	0	1/2	1/4	0.0151 (4)
Mnl	0.590 (5)	0	1/2	1/4	0.0151 (4)
Tel	1.00	0	0	0.35612 (4)	0.0154 (4)

Table 2. Selected bond distances (Å) and angles (°) (M = Ag, Mn)

 Cs1—Te1¹
 3.892 (2)
 M—Te1¹⁰
 2.794 (1)

 Te1¹⁰—M—Te1¹⁰
 110.23 (2)
 Te1¹¹—M—Te1¹⁰
 107.96 (4)

 Symmetry codes: (i) $x - \frac{1}{2}, y - \frac{1}{2}, z - \frac{1}{2}$; (ii) $-\frac{1}{2} - x, \frac{1}{2} - y, \frac{1}{2} - z$; (iii) x, 1 + y, z; (iv) $\frac{1}{2} - x, \frac{1}{2} - y, \frac{1}{2} - z$.

Initial cell parameters and symmetry information for CsAg_{0.64}Mn_{1.18}Te₂ were obtained from precession photographs taken at room temperature. Intensity data were processed (Waters & Ibers, 1977) and corrected for absorption (de Meulenaer & Tompa, 1965) on an IBM RS/6000 series computer. The initial Cs, Ag, Mn, and Te positional parameters were obtained from the structure of the isostructural compound CsLiMnS₂ (Schmitz & Bronger, 1987). The structure was refined with the program SHELXL93 (Sheldrick, 1993). The Ag⁺ and Mn²⁺ cations are disordered unequally over one site. The stoichiometry of these metals was determined by constraining the total charge of the Ag/Mn site to be +3 (to maintain charge balance) while refining the occupancies of the Ag⁺ and Mn²⁺ cations. The refinement included anisotropic displacement parameters and an extinction parameter. The anisotropic displacement parameters of the Ag⁺ and Mn²⁺ cations were constrained to be equal. The final difference electron density map shows no feature with a height greater than 1.3% that of a Cs atom.

 $CsAg_{0.64}Mn_{1.18}Te_2$ exhibits the ThCr₂Si₂ structure type (Klepp & Boller, 1978) and comprises layers of edge-sharing *M*-centered tetrahedra (*M* = Ag/Mn) separated by Cs⁺ cations.

Data collection: local program. Cell refinement: local program. Data reduction: local program. Molecular graphics: *SHELXTUPC* (Sheldrick, 1994). Software used to prepare material for publication: *SHELXTUPC*.

Lists of structure factors, anisotropic displacement parameters and complete geometry have been deposited with the IUCr (Reference: BR1142). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Klepp, K. & Boller, H. (1978). Monatsh. Chem. 109, 1049–1078.
 Meulenaer, J. de & Tompa, H. (1965). Acta Cryst. 19, 1014–1018.
 Schmitz, D. & Bronger, W. (1987). Z. Anorg. Allg. Chem. 553, 248–260.

Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.

Acta Cryst. (1996). C52, 2385-2387

A New Europium Borosilicate, Eu₃BSi₂O₁₀

LISHENG CHI, HUAYANG CHEN, SHUIQUAN DENG, HONGHUI ZHUANG AND JINSHUN HUANG*

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fujian, Fuzhou 350002, People's Republic of China

(Received 13 February 1996; accepted 18 April 1996)

Abstract

A single crystal of a new europium borosilicate, boron trieuropium disilicon decaoxide, was obtained by high-temperature solid-state reaction and chemical vapour transport methods. The structure is composed of layers of isolated BSi10 $_{6}^{5-}$ and Si20 $_{4}^{4-}$ anions which alternate along the *c* axis. The layers are linked through three crystallographically independent Eu³⁺ ions to form a three-dimensional network structure.

Comment

Studies of rare earth borosilicates in the last ten years have shown these compounds to be promising phosphor and laser materials. The compounds LnBMO₅ (M = Si, Ge) with the stillwellite structure contain a distorted chain of tetrahedral BO4 groups (Voronkov & Pvatenko, 1967: Ruimont & Tarte, 1988: Jsarvuk et al., 1991); Eu³⁺ in these compounds shows relatively high luminescent efficiency (Antic-Fidancev, 1994). $Nd_3BGe_{1.08}Si_{0.92}O_{10}$ contains the planar BO₃ group (Serhan et al., 1994) and the Ge and Si atoms are distributed statistically over the tetrahedral sites. The strong B-O bond in this compound influences the crystal field around the rare earth sites, which may be helpful in raising the fluorescence lifetime of the ${}^{4}F_{3/2}$ emitting state of Nd³⁺. We have recently investigated the system $Ln_2O_3-B_2O_3-SiO_2$, and we report here the synthesis and crystal structure of Eu₃BSi₂O₁₀.

Fig. 1 shows the unit cell of $Eu_3BSi_2O_{10}$. It is apparent from this view that the structure consists of isolated $BSi1O_6^{5-}$ and $Si2O_4^{4-}$ anion layers alternating along the *c* axis. The $BSi1O_6^{5-}$ anions consist of a BO₃ triangle and an $Si1O_4^{4-}$ tetrahedron linked by corner